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1.0 AN OBSERVATION 

 
 
The following project was inspired by a personal finding during Test #1 in Math 510A (1), 
taught by Prof. Dr. W. Watkins.  In particular, problem #2 in that test asked to “…find a 
polynomial with integral (integer) coefficients that annihilates 
 

α = √5 - √2 
 
The solution to the given problem was pretty simple, as follows: 
 

α +2 = √5 
 
By squaring both sides: 
 

α2 +2√2α + 2 = 5 
 
or: 
 

(2√2α)2 = (3 - α2)2 
 
or 
 

8α2 = 9 – 10α2 – α4 
 
or 
 

α4 - 14α2 + 9 = 0 
 

Therefore, α is a root of the polynomial: 
 

P (x) = x4 – 14x2 + 9 
 
Furthermore, during Test #1, I tried to verify my finding and I have made the observation 
that if I take: 
 

y = x2 
 
then P(x) from above becomes: 
 

Q(y) = y2 – 14y + 9 
 
Thus, by the quadratic formula, the roots of Q(y) are: 
 

y1,2 = ½[14 ± √(142 – 4 * 9)] = ½ (14 ± √160) = 7 - 2√10 
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Therefore, the roots of the initial equation: 
 

P (x) = x4 – 14x2 + 9 
 
are: 
 

x1,2,3,4 = ±√(7 - 2√10) 
 
And now comparing this finding with the solution to the initial problem, I realized that 
 

α = √5 - √2 
 
must be one of the four previous values for x, even though apparently they don’t look 
like a good match. 
 

1.1 AN HYPOTHESIS 
 
 
Thus, the hypothesis is that: 
 

√5 - √2 = ±√(7 - 2√10) = 0.821854415… 
 
which is simple to verify, by squaring both sides of the identity: 
 

5 + 2 - 2√10 = (7 - 2√10) 
 
or 
 

7 - 2√10 = 7 - 2√10 
 
Next, I have made the observation that if I replace ‘-‘ by ‘+’ between the radicals the 
identity still stands, i.e., : 
 

√5 + √2 = ±√(7+ 2√10) 
 
which, again, is quite simple to verify, by squaring both sides of the identity. 
 
Furthermore, being inspired by the “interesting” finding, I have said, how about this 
identity: 
 

√m ± √n = ±√[(m + n) ± 2√m*n] 
 
where m, n are natural numbers (m = n = 0 also verify, as a trivial solution) and 
which again is simple to verify, by squaring both sides of the identity: 
 



 

Page 3 of 11 

m + n ±2√m*n = (m + n) ± 2√m*n 
 
Right after submitting my test paper to Prof. Watkins I spoke to him about my finding 
during the test, more like a curiosity – not even close to claim I have made any discovery.  
Next class session, Prof. Watkins said that’s actually an interesting finding, thus he 
suggested me to make it a project paper for Math 10A/B courses pair.  Furthermore, he 
suggested the title of the paper ‘Equal Radicals’(2) and have added another similar 
problem that I could further extend. 
 

2.0 ANOTHER RELATED PROBLEM 
 
 
Here is the second (related) problem (as suggested by Prof. Dr. Watkins2): 
 
“Let a, b, and c be positive integers (a = b = c = 0 also verify, as a trivial solution).  
What are the conditions on a, b, and c must hold in order to satisfy the identity: 
 

a = b + c?” 
 
The solution is fairly simple, as follows: 
 
Let: 
 

α = √a and β = √b + √c 
 
Thus we must find a, b, and c, such that: 
 

α = β 
 
Through few simple computational steps (similar to those performed in paragraph 1.0 
above), we find that the polynomial: 
 

P(x) = x2 - a 
 
annihilates α, and the polynomial: 
 

Q(x) = x4 – 2(b + c)x2 + (b – c)2 
 
Annihilates β. 
 
Now, if: 
 

α = β 
 
Then a is a root of Q(x), thus: 
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a2 – 2(b + c) a + (b – c)2 = 0 
 
And using the quadratic formula for the above equation with a as unknown: 
 

(*) a1,2 = b + c ± 2√bc 
 
Since a, b, and c must be integers, then √bc must also be an integer and hence bc must be 
a perfect square. 
 
At this point Prof. Dr. Watkins2 said: “More can be said (about b and c).” – thus 
leaving me with the opportunity to further explore that relationship.  Therefore, as part of 
the same project, I started analyzing what the relationship between b and c must be such 
as identity (*) above can be satisfied amongst integers a, b and c. 
 

2.1 ANOTHER FINDING 
 
 
I’ve heard (and saw working in the classroom) from Prof. Watkins that Mathematica11 is 
a nice package to have these days of computing era, helping tremendously with all kind 
of complex computations and also eliminating the typical human error in calculations 
(that I’m guilty of quite often).  And, purchasing a copy is high on my agenda.  
Meanwhile, trying to get this project proposal out, I found a good use for Microsoft Excel 
to look at the product of integers bc and see if I can notice any pattern -  little bit of 
cheating… - that would help be to more precise when say what b and c could be in order 
to satisfy (*) above. 
 
Therefore, the finding was that b and c must be of this form: 
 

b = b1
p

1*b2
p

2*…* bn
p

n(*d1
2q

1*d2
2q

2*…*dm
2q

m) 
 
and 
 

c = c1
2n

1±
p1*c2

2n
2±

p2*…*cn
p2n

n±pn(*e1
2r

1*e2
2r

2*…*es
2r

t) 
 
where the terms in parentheses are optional for both b and c.  With other words, in plain 
English that means if b contains any factor at any power, then c must contain the same 
factor at an even power ± the power of b’s factor.  In addition, either b or c can contain 
any other factor as long as its power (exponent) is an even number.  Furthermore, it 
means there are actually an infinity of sets/vectors (a, b, c)  - we have two as for any 
couple of b and c - of natural numbers of the above form that satisfies the given identity. 
 
For example, let: 
 

b = 23*5 = 8*5 = 40 
 
thus: 
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c = 2*53 = 2*125 = 250 

Thus: 
 

bc = 24*54 = 104 = 10000 
 
Therefore: 
 

√bc =√24*54 = 22*52 = 100 
 
Thus: 
 

a1,2 = b + c ± 2√bc = 40 + 250 ± 2*100 = 40 + 250 ± 200 = 490 or 90 
 
Now: 
 
a, b, and c must satisfy the original equality: 
 

a = b + c  
 
So, substituting the above found values for a = 490, b = 250 and c = 40 we have: 
 

√490 = √40 + √250 
 
or, 
 

7√10 = 2√10 + 5√10 
 
which is true. 
 
Now, let’s substitute the above found values for a = 90, b = 250 and c = 40 we have: 
 

√90 = √40 + √250 
 
or,  
 

3√10 = 2√10 + 5√10 
 
Which does not verify!?...  But, this is true: 
 

3√10 = 5√10 - 2√10 
 
Which means two things: 
 

1)  Only the a1 = b + c + 2√bc solution satisfy this identity: 
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√a = √b + √c 
 

(**) a1 = b + c + 2√bc 
 

2)  a2 = b + c - 2√bc solution satisfy this identity: 
 

√a = √b - √c 
 

(***) a2 = b + c ± 2√bc 
 

2.3 FURTHER EXPLORATION 
 
 
Now, let’s go back to the initial identity: 
 

√a = √b + √c 
 
And replace + by -, so we have: 
 

√a = √b - √c 
 
So, is this new identity holding truth, too? 
 
Taking the same approach as above, let be: 
 

α = √a 
 
and 
 

β =√b - √c 
 
Thus: 
 

(β - √b)2 = c 
 
and: 
 

β2 - 2√b β + b = c 
 
Now re-grouping the terms: 
 

β2+ (b – c) = 2√b β 
 
Now, squaring both sides: 
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β 4 + 2β2 (b – c) +(b – c)2 = 4 β2b 
 
Regrouping the terms again: 
 

β 4 - 2β2 (b + c) +(b – c)2 = 0 
 
And the solutions for this quadratic equation are: 
 

β2 = ½{ 2(b+c) ±√ [4(b+c)2 – 4 (b-c)2] } or β2 = b+c ±2√bc 
 
Thus, since: 
 

α = √a 
 
and we must have: 
 

α = β 
 
we have reach a similar conclusion for: 
 

√a = √b - √c 
 
like for: 
 

√a = √b + √c 
 
Thus, the similar relationship we must have between a, b, and c: 
 

(***) a = b + c - 2√bc 
 
In conclusion, we can say now: 
 
“Let a, b, and c be positive integers (a = b = c = 0 also verify, as a trivial solution).  
The conditions on a, b, and c that satisfy the identity: 
 

√a = √b ± √c 
 
are: 
 

a1,2 = b + c ± 2√bc 
b = b1

p
1*b2

p
2*…* bn

p
n(*d1

2q
1*d2

2q
2*…*dm

2q
m) 

c = c1
2n

1±
p1*c2

2n
2±

p2*…*cn
p2n

n±pn(*e1
2r

1*e2
2r

2*…*es
2r

t) 
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where the terms in parentheses are optional for both b and c. In addition, for the ‘+’ 
version of the identity, a = b + c + 2√bc and for the ‘-‘ version of the identity, b + c - 
2√bc ” 
 

3.0 FERMAT’s LAST THEOREM (with RADICALS) 
 
 
Finally, the identity: 
 

√a = √b ± √c 
 
inspired a rewording for the Fermat’s Last Theorem8, as follows: 
 
“Is there a, b, and c natural numbers and n natural number greater than 2 (n > 2) – 
i.e., 3, 4, … - such that: 
 

a1/n = b1/n + c1/n 

 

or 
 

a1/n = b1/n - c1/n? 
 
or 
 

a1/n = b1/n ± c1/n? 
 
From the above problems we know that for n = 2 we have an infinity of solutions 
(sets/vectors of a, b, and c satisfying that identity, same as there is an infinity of solutions 
for the Pythagorean Theorem10 (that probably inspired Fermat to state his Last 
Theorem): 
 

a2 = b2 + c2 
 
[By the way, there is an infinity of Pythagorean numbers that satisfy: 
 

a2 = b2 - c2 just re-arrange the values for a, b and c.] 
 
3.1 ATTEMPT TO SOLVING FERMAT’s LAT THEOREM (with RADICALS) 
 
 
Now, for n = 3 the above identity becomes: 
 

a1/3 = b1/3 + c1/3 
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and following the same method to eliminate the radicals (of degree 3 this time), I have 
arrived to the following equation where I can eventually express a as a function of b and 
c: 
 

a3 – 3(b+c)a2 + (3b + 3c – 27bc)a – 54bc(b+c) = 0 
 
and from here, using Tartaglia (Cardano)9’s formulas I can see what conditions b and c 
must meet in order for  a, as a function of b and c, be an integer: 
 
Now, given: 
 

x3 + α x2 + β x + γ = 0 
 

Tartaglia (Cardano)’s formulas are: 
 

x1, 2, 3 = 3√( q/2 ± √(q2/4 + p3/27)) 
 
where: 
 

p = β - α 2/3 
 

q = γ + (2 α 3-9 α β)/27 
 
So, in our case I just need to replace: 
 
α by – 3(b+c); 
 
β by (3b + 3c – 27bc); 
 
and  
 
γ by – 54bc(b+c). 
 
But at this point I really need Mathematica11 in order to arrive to formulas that express a 
as a function of b and c.  And then to see if there is possible to find integers b and c such 
as a is also an integer. 
 
Furthermore, assuming that exercise would be successful, it means that THIS version of 
Fermat’s Last Theorem actually has solutions for n > 2, which at least to me would be 
AMAZING, proving, once again, that radicals are little wonders of the Arithmetic! 
 
And, since in a dreaming mode, assume I can do the same for n = 4 (even though I 
imagine colossal computations to eliminate those radicals - even using Mathematica – we 
still have formulas to solve a degree 4 polynomial equation.  But after that, even if 
elimination of radicals would be possible, there are not known formulas for solving a 
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degree of 5 or higher of polynomial equation!  Thus, I guess “God was smart when 
after inventing the integers He stopped!” 
 

To be continued(?!...) 
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